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On the Critical Exponent for
Random Walk Intersections
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The exponent (, for the probability of nonintersection of two random walks
starting at the same point is considered. It is proved that 1/2 <, <3/4. Monte
Carlo simulations are done to suggest {,=0.61... and {;~0.29.
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1. INTRODUCTION

Let S, S? be independent simple random walks starting at the origin in Z¢
and let f(n) be the probability that the paths of the first # steps do not
intersect, i.e.,

f(n)=P{S'[0,n] " S*0,n] =}
where S/[a, b] = {S/(i):a<i<b}, S/(a,b]={S/(i):a<i<b}. For d<4,
f(n)— 0 as n— o0, while for d>4, f(n) »c¢>0. It is conjectured that
f(n)~c(logn)~* d=4

(.0
fny~Ln)n~¢ d<4

where { ={, is a dimension-dependent “critical exponent” and L=L, is a
slowly varying function.
It is known that

e n @2 L fn)y < e ntd =M d<4

(1.2)
c(logn) ' < f(n)<cy(logn)™?  d=4
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(Here and throughout this paper we use ¢, ¢,, ¢, for positive constants

which may change from line to line.) This can be proved”*’ by considering
F(n)=P{S'[0,n] N (S*0,n] U S*0,n])= &}

where S? is a simple random walk starting at the origin independent of S
and S? and proving
e n YL F(n) < cyn'd=2, d<4 13)
clogn) ' < F(n)<c,(logn)~', d=4 '

Hence,

(1.4)

<laxl

ST

For d=1, one can use the results of Chapter 3 of ref. 5 to show that
f(n)~en', ie, {{=1, so that neither inequality in (1.4) is strict.
It has been shown® that {,=1/2 at least in the sense that

log f(n) 1

nLn?m loglogn 2

although it is still open whether f has the exact asymptotic form (1.1). For
d <4, Duplantier'® has conjectured that the inequality (1.4) is not strict,
ie.,

d—4<c<d—4
4 D]

, d<4

and has derived a nonrigorous expansion for {, in d=4 - Duplantier
and Kwon have recently conjectured that {, = 5/8. The conjecture comes
from assuming a type of conformal invariance for the problem, concluding
that only certain rational numbers are possible values for the exponent,
and then using a Monte Carlo simulation to determine which value.

In this paper, we prove that the inequality (1.4) is not strict by
proving that for some &> 0,

(1.5)

Do | —
AW
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As can be seen by the proof, we can get an estimate on the ¢ we derive;
however, we expect it to be far from the true value. For both d=2 and
d=73 we have also done Monte Carlo simulations which suggest that

L~06l.,  (3~029

Our value for {, is a little less than that of Duplantier and Kwon, but, as
cani be seen in Section 3, we can by no means rule out the possibility
{,=15/8. It does scem that our simulation does not quite agree with theirs.
For d =3, we have no proof that neither inequality in (1.4} is strict, but our
value certainly supports this conjecture.

Similar results can be proved for Brownian motion and will appear in
a forthcoming paper."’ The proofs are similar; however, there does not
seem to be any easy way to prove results about random walk exponents
directly from Brownian motion results or vice versa.

2. RESULT IN TWO DIMENSIONS

In this section we prove the estimate (1.5) by proving the following.

Theorem 1. For d=2, for some ¢>0,

3 1 1
3 < lim ing 108/ ) logft) 1, 2.1)
4 " 4o logn logn 2

< lim sup

n— O

We note that we have not proved that f(r) has the form (1.1) or even that
{5 is well defined, i.e., that

L log f(n)

.
=562
n— 00 logn

exists.
We start with some notation: if » and r are nonnegative integers,
R,={z=(zy,2,)eZ% |z, <n}
OR,={zeR, |z|=nor|z,|=n}
R =R,
OR"=0R,
and if S is a simple random walk in Z2,

énzlnf{]ZIS(J)eaRn}ﬁ ér:éZ’
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If a is a positive real, we write R,, 0R,, and £, for R, 0R,q, and &y,
where [ -] denotes the greatest integer function. We will prove that if

f(n)=P{S'[0, fi/;] n S0, fi/;] =}
where fi/; denotes the hitting time of dR; /7 for S, then

log f(n) log 7(n) 1
log n logn < 27 ¢ (22)

3

H—

< lim sup

n-—= o0

A standard estimate states that for every o >0, there are a=a(x) and
¢ =c(a) >0 such that

P{n' *<& m<n'tey =1—O(exp{—en‘}) (23)

and hence it is immediate to conclude (2.1) from (2.2). It follows from (1.3)
and (2.3) that if

Fin)=P{S'10,¢ 211 (S%(0,¢ ;10 S0, & ;1) = &}
then for every J >0, there exist ¢,(8), ¢,(0) >0 with
,(0yn K F(n) < ey(8)n 0 (2.4)
In fact, we can prove that

cyn ' <Fn)<cn! (2.5)

but since (2.4) is sufficient for our proof, we will not prove (2.5). For
convenience we will actually assume (2.5); the skeptical reader can easily
adapt the argument so that only (2.4) is used.

Lower Bound. We start by proving a lemma of independent interest
which relates the probability that a random walk in Z¢ escapes a set to the
(discrete) harmonic measure of the set. Let 4 be a finite subset of Z¢ and

T =inf{j>1: S(j)e 4}

Then the harmonic measure H ,(x) is defined for x e 4 by""

. PS(t)=x}
Hy(x)= |y1|1£noo —————Py{TA p

For d=2, the denominator on the rhs is equal to one. For n>0, let

pan=Inf{j=1:S(j)e AUIR,}
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Lemma 2. There exist constants 0 < ¢, < ¢, < oo such that if #> 0,
A< R,,, and x€ 4, then

¢ H(x) P.{S(p)e A} <P {S(p)edR,} n*~*
< H(x) P.{S(p)e 4}

where H(x)=H ,(x), p=p . and Z=([3n/4],0,.., 0).

Proof. We may assume n>4, so that 0R,,; N0R,, 4=, ORs, 4N
0R,= . The function @(z)=P_.{S(p)e A} is harmonic for n/2 <|z| <
n—1. Hence, by the discrete Harnack inequality’® there exist constants
0 <¢; <c¢,< oo, independent of 4 and x, such that for ze R, ,

¢\ P.{S(p)=x} <P.{S(p)=x} <es P.{S(p) = x} (26)
By reversing paths, we can see for xe A4,

P.{S(p)edR,}= Y P,S(p)=x) 27)

VyedR,
Let
]7 = 1nf{j> 1: S(]) S aRn U 8R3n/r4}

Then by the Markov property, if yedR,, x€ A,

P{Slp)=x}= ) P,{S(n)=z}P.{S(p)=x} (2.8)

z€ dR

Combining (2.6)-(2.8), we get

CIPE{S(p):X} Z P}»{S(ﬂ)eahaM}

yedRy

<P.{S(p)edR,}

<02P5{S(P):x} Z Py{S(U)EaR3n/4}

YeOR,

If T(m) is a one-dimensional random walk and o=inf{j>1: T(j)=0 or
[n/4]}, then a standard estimate states that Po{T(0)=[n/4]} ~4/n. If we
use this estimate on one component of S, we can derive the estimate

enf gy P{S(n)€dR,, 4} <coni?

vedR,
and hence

e P{S(p)=x}n" <P {S(p)edR,)
<P {S(p)=x}n? 2 (2.9)
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A random walker starting at infinity which reaches 4 must hit dR,,,
at some time after the last hit of dR, before hitting 4. From this we can
easily see that H(x) is bounded above (below) by the supremum (infimum)
of

P{S(p)=x}
P {S(p)e 4}

where the supremum (infimum) is taken over all zedR,,,. But by
Harnack’s inequality we can bound this on ecither side by a constant times
the term with Z replacing z, giving

¢ H(x) P,{S(p)e A} < P.{S(p)=x} <, H(x) P.{S(p) e A}

Substituting the above into (2.9) gives the lemma.
Although we will not need the following lemma for our main theorem,
it seems appropriate to include it here.

Lemma 3. If 4 is a connected subset of Z? containing 0 with
diam(A4) = an, then

P.{S(p)ed}zci(1—loga)™!

where Z and p are as in Lemma 2.

Proof. We may assume o< 1/2. Let &(x, y) be the Green’s function
of the random walk killed when it leaves R, ie., if x, ye R,

2 )= T PAS() =3 &> 1)

j=0

For x, y € R;,j4, @ routine estimate using the local central limit theorem
(see, e.g., ref. 11) gives

c; < g(x, y)<cylog (2.10)

[x— yl

Let B< A be a subset such that B=R,,, s5, and for each nonnegative
integer j<<oan/2 \/5, BN R, contains exactly one point. Since 4 is a
connected set containing 0 with diam(A) > an, it is easy to see that such a
B exists (although B might not be connected). Let

v=3 1(stj)eB)

j=
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where [/ denotes indicator function. Then the estimate (2.10) implies that if
X€ R34,

cion<E(Y)<c,on(l—loga)

(The second estimate uses the fact that there are at most 2j + 1 points in
B within distance j of x.) A standard Markov argument gives

E(Y
P.AS(p,,)eA}=P.{S(pg,) € B} z]g_(_ﬁ%%')

E(Y)
- sup, E,(Y)

>c (1 —loga)™!
which proves the lemma.
From Lemmas 2 and 3,

e H(x)< P {S(p)edR,} <c,H(x) (2.11)

We will also need the following lemma proved by Kesten,'® which is a
discrete version of the Beurling projection theorem.

Lemma 4. If 4 is a finite connected subset of Z? then for every
xed

H ,(x) < c,(diam A4)~

We are now ready to prove the lower bound of (2.2). Let S, 8% S°
be mdependent random walks in Z? starting at 0 and let @, = S'[0, & f]

w,=S*0, ¢ < w; =S50, éf] By (2.5)
Plo,n(w,vw)=g}zcn! (2.12)
Also,
Plon(o,vw;) =g} =Plo,nw,=F} Plo, Nws=J o, Nnw,=}
(2.13)
For any path o, Lemmas 2 and 4 give
P, {o,nwy=F}<c,n™

where P, {®w, nw; =} denotes the probability that the walk w, does not
intersect the fixed walk ,. Hence

Plonos=F{w,nw,=F}} <c,n
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Plugging this into (2.12) and (2.13) gives
con ' <en T Plo nw, =T}
or
Plo,nw,=F}=cn

Upper Bound. We say a set C < Z? disconnects 4 and B if for every
ae A, be B, every (nearest neighbor) path from a to b includes at least one
point in C\(4 u B).

Lemma 5. There exists a ¢; > 0 such that for every yedR", r1,

P,{S[0, £+ '] disconnects 0 and 6R" "'} > ¢,

Proof. Let S(j)=(S,()), S,(j)) be a two-dimensional simple random
walk starting at 0 and let o, =inf{j: S,(j) > 3n}. Then it is routine to show
that for some ¢>0

n n
P 1}z —5—, N<57,0</<0,; 2 2.1
()2 —505: 1S:0)I <55, 0<i <ok >e (214)

For any xe Z?, let R,(x)={z+x:z€R,}.

Let yedR" and for ease suppose y=(m, 2"). Let y,, yy,.., ¥s be the
points y, (27,27), (2, =2"), (=2, =27, (=2,2"7", (3-2771,27°")
respectively. Let L, be the line segment which connects y, ; and y, and for
a>0

B;(a)= {x:dist(x, L,)<a-2"}

Suppose zg,..., zs are points in R, ,,(y;) and Q,,.., Qs are nearest neighbor
paths from z,_, to z; lying entirely in B,(1/20). Then it is easy to check that
the path Q= Q, --- Qs never hits 0 or dR"*' and makes a “loop” about 0
disconnecting 0 and dR" ™.

Let

1, =1nf{ j: S(j) € Rui0o(¥:)}
Then by (2.14), for any ze R(; _ 1)n100(Vi—1)>
P.{S(j)e B:(1/20),0< <1} =¢

and hence the probability that the simple random walk starting at y makes
a path Q, --- Qs as above is at least ¢, which completes the proof.
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We note that the above construction allows us to get estimates on the
probability ¢;. However, since we do not expect these estimates to be close
to the actual value, we will not do it here.

Lemma 6. There exist o >0, ¢, < o0 such that
Py{S(0, &,) disconnects {0} and 0R,} =1—c,n ™"
Proof. It suffices to prove the lemma for n=2". By Lemma 5, for
each s<r

Po{S(&%, & *1) disconnects {0} and dR"| S[0, &1} = ¢,
and hence

Py{S(0, &) does not disconnect {0} and dR"} < (1 —¢,)" ™!

=c,n*

where ¢, = (1 —¢,) " and a = —log(1 —¢,)/log 2.

We are now ready to prove the upper bound. As before, let w, =
S'[o, 5;;], w,=S*(0, 5@;], ;= S30, 5%]. Let B= {w,: w, does not
disconnect 0 and R s;}. By Lemma 6, P(B)<c,n ¥ It is also clear that
P, {w,nw,=|w, B} =0. Consider the random variable

X(a)l):sz{a)lﬁwzzg}
Then, since w, and w; are independent,
[X(0)]= sz,w3{wl N (WU ws) =T}

and hence by (2.5) and Schwarz inequality,
en ' z2P{o n(w,vwy)=F)
=E,,(X?)
> [E,(XTp) 1P [E,(Iz)]1"
=[E, (XN [P(B)] !
which gives

Ploynw, =@} =E,(X)<cyn™ 270
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3. SIMULATIONS IN TWO AND THREE DIMENSIONS

In order to estimate {, for d=2, 3, Monte Carlo simulations were
made of the probability

h(n)=P{S'(i{)#S*(j):0<i<n, 0< <n, (i, ) #(0,0)}

While this is not exactly the same as f(n), we expect that A(n) has
asymptotic form

h(n)~ L(n) n~* (3.1)

where L is a slowly varying function which should be asymptotic to a
constant times the L in (1.1) and { is the same as in (1.1). Suppose that M
independent pairs of random walks are taken, and let K(n) be the number
of such pairs which have no intersection up through time #. Then we can
estimate h(n) by M~ 'K(n). To estimate an exponent such as {, we must
assume that /4 has a form such as (3.1) and that the asymptotic regime has
been reached. Let us suppose for the moment that

h(n)=c,n=* (3.2)
Then if n, <n,,

_ log p
"~ logn,—logn,

where p= p(n,, ny)=~h(n,)/h(n,). Since the walks are independent, an
approximate 95% confidence interval for p would be [p_, p, ], where

P =K(n,)/K(n,) and
L TR=p)”
r-=rs2 " |

and hence an approximate 95% confidence interval for { would be
[L(p,), {(p_)], where

Upe)= 1~———l°g” =
ogn, —logn,

Also, if n; < n, < ns, the estimate for p(n,, n,) is essentially independent of

the estimate for p(n,, n;). Of course, this assumes that 4(n) has the form

(3.2), but if A(n) has the asymptotic form (3.1), this should not be too far

from the correct estimate.
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Table |
ny ny K(n,) o) {(p) o)
d=2

50 70 182,727 0.603 0.610 0.618

70 100 148,814 0.605 0.613 0.621
100 150 119,595 0.604 0.613 0.621
150 200 93,296 0.602 0.612 0.623
200 250 78,224 0.604 0.617 0.631
250 300 68,158 0.608 0.623 0.639
300 350 60,837 0.617 0.635 0.652
350 400 55,167 0.594 0.613 0.632
400 450 50,832 0.570 0.591 0.612
450 499 47,414 0.592 0.615 0.639

d=3

50 100 224,147 0.288 0.291 0.294
100 200 183,175 0.286 0.289 0.293
200 300 149,912 0.280 0.284 0.289
300 400 133,582 0.283 0.289 0.295
400 500 122,926 0.282 0.289 0.296
500 600 115,252 0.277 0.285 0.293
600 700 109,414 0.282 0.290 0.299
700 800 104,626 0.275 0.285 0.294
800 900 100,725 0.275 0.285 0.295
900 999 97,404 0.275 0.285 0.296

For d=2, M = 3,000,000 pairs of random walks of length 500 were
generated; for d=3, M =1,000,000 pairs of walks of length 1,000 were
generated. We list the results for various values of #,, n, in Table I.

From the table we can sce that the value of {5 seems to be about 0.29,
and that we are in the asymptotic regime. There is considerably more
variance for the values of {,, which indicates that either the asymptotic
regime has not been reached or perhaps that the asymptotic behavior of
h(n) is more complicated than (3.1). We find it curious that our interval for
ny =50, n, =70 does not include 5/8. The values for n, =50, n, =70 were
considered by Duplantier and Kwon®’ in deriving the {, = 5/8 conjecture,
and their simulations place the exponent in a range 0.622 +0.004. Our
simulations would tend to indicate that {, < 5/8, but we certainly cannot
preclude {, =5/8 with any degree of confidence.
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