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The exponent ~'a for the probability of nonintersection of two random walks 
starting at the same point is considered. It is proved that 1/2 < ~2 ~< 3/4. Monte 
Carlo simulations are done to suggest ~2 = 0.61... and ~'3 ~ 0.29. 
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1. I N T R O D U C T I O N  

Let S 1 S 2 be independen t  simple r a n d o m  walks s tar t ing at the origin in 77 ~ 

and let f ( n )  be the p robab i l i t y  that  the pa ths  of the first n steps do  not  
intersect,  i.e., 

f ( n )  = P{S~[O,  n ]  n $2(0, n ]  =525} 

where SJ[a, b]  = {SY(i): a <~ i<~ b}, SJ(a, b] = {SY(i): a <  i<~b}. F o r  d~<4, 
f(n)--+ 0 as n--+ oo, (4) while for d >  4, f ( n ) - +  c >  O. It is conjec tured  that  

f ( n ) ~ c ( l o g n )  -~-" d = 4  

f ( n ) ~ L ( n ) n  -~ d < 4  
(1.1) 

where ~ = ~d is a d imens ion -dependen t  "cri t ical  exponent"  and L = La ts a 
slowly vary ing  function. 

It is k n o w n  tha t  

C 1 n ( d -  4)/2 <_f(n) <~ c2 n(d-4)/4 d <  4 

c l ( l o g n )  i<~f(n)<~c2( logn)  ~/2 d = 4  
(1.2) 
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(Here and throughout this paper we use c, c,,  c 2 for positive constants 
which may change from line to line.) This can be proved (v,9) by considering 

F(n) = p { 8 1 [ 0 ,  r/] (3 (82(0,  n] w $3(0, n])  = ~Z ~ } 

where S 3 is a simple random walk starting at the origin independent of S 1 
and S 2 and proving 

cln('t-41/2 <, F(n) <~ c2 n(~-4)/2, d < 4  

cl ( logn)- l<~F(n)<~c2( logn)  l, d = 4  
(1.3) 

Hence, 

4 - d  4 - d  
- - ~ < ~ d ~ < - - ,  d < 4  

4 2 

1 
~<~4~<1 

(1.4) 

For d =  1, one can use the results of Chapter 3 of ref. 5 to show that 
f ( n )  ~ cn 1, i.e., ~1 -- 1, so that neither inequality in (1.4) is strict. 

It has been shown ~8) that ~4 = 1/2 at least in the sense that 

lira log f ( n )  1 
n ~ ~ log log n 2 

although it is still open whether f has the exact asymptotic form (1.1). For 
d < 4 ,  Duplantier (2) has conjectured that the inequality (1.4) is not strict, 
i.e., 

d-4 @ 
- - ~ < ~ e <  , d < 4  

and has derived a nonrigorous expansion for Ca in d - - 4 - e .  Duplantier 
and Kwon (3) have recently conjectured that {2 = 5/8. The conjecture comes 
from assuming a type of conformal invariance for the problem, concluding 
that only certain rational numbers are possible values for the exponent, 
and then using a Monte Carlo simulation to determine which value. 

In this paper, we prove that the inequality (1.4) is not strict by 
proving that for some e > 0, 

1 3 
5+e<~2<2 (1.5) 
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As can be seen by the proof,  we can get an est imate on the e we derive; 
however,  we expect it to be far f rom the true value. For  bo th  d =  2 and 
d =  3 we have also done Monte  Car lo  s imulat ions which suggest that  

~2 ~'~ 0.61 .... ~3 ~ 0.29 

Our  value for [2 is a little less than  that  of Duplan t ie r  and Kwon,  but, as 
can be seen in Section 3, we can by no means  rule out the possibili ty 
[2 = 5/8. It  does seem that  our  s imulat ion does not  quite agree with theirs. 
For  d =  3, we have no p roof  that  neither inequali ty in (1.4) is strict, but  our  
value certainly suppor ts  this conjecture. 

Similar results can be p roved  for Brownian  mot ion  and will appea r  in 
a for thcoming paper.  (~) The proofs are similar; however,  there does not  
seem to be any  easy way to prove  results abou t  r a n d o m  walk exponents  
directly f rom Brownian  mo t ion  results or vice versa. 

2.  R E S U L T  IN T W O  D I M E N S I O N S  

In this section we prove  the est imate (1.5) by proving the following. 

T h e o r e m  1. F o r d = 2 ,  for some s > 0, 

3 - ~ < l i m  in f l~  ~< '" l o g f ( n )  _ 1 , m  s u p -  ~ - ~ - ~  (2.1) 
= ~ o  l o g n  =~oo l o g n  

We note that  we have not  p roved  t h a t f ( n )  has the form (1.1) or even that  
~2 is well defined, i.e., that  

log f(n) 
lim - -  = ~2 

,, ~ oo log n 

exists. 
We start  with some notat ion:  if n and r are nonnegat ive  integers, 

R== {z= (z,, z2)c 22: rz,I ~<n} 

OR=: {z~R=: IZll : n o r  Iz2[ = n }  

R r = R 2  r 

c~R r = 0R2r 

and if S is a simple r a n d o m  walk in Z 2, 

~= = inf{j~> 1: S(j)eOR=}, ~r= ~2 r 
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If a is a positive real, we write R.,  (?R., and ~a for R[ . ] ,  8R[.], and ~[~], 
where [ - ]  denotes the greatest integer function. We will prove that  if 

where ?:',f~ denotes the hitting time of (?RE,/~ ~ for S i, then 

3 1 - ~41 imin f l~176  ~ (2.2) 
, ~ ~ log n , ~ on log n - 2 - 

A s tandard estimate states that  for every ~ > 0 ,  there are a = a ( e )  and 
c = c(c~) > 0 such that 

p{/71- :~ ~ Cx/. ~ ~ 17l +c(} ~- 1 --  O(exp{ -cn"} )  (2.3) 

and hence it is immediate  to conclude (2.1) from (2.2). It follows from (1.3) 
and (2.3) that if 

F(n) = P{S~[0 ,  r ~ ($2(0, r  w $3(0, ~ / ~ . ] ) =  ~ }  

then for every (i > 0, there exist c~(c5), c2(5)>  0 with 

c1((5) n 1-~ <<p(n)<<c2(5)n 1+~ (2.4) 

In fact, we can prove that 

Cl n - I  <~ T'(n) <. c2n -1 (2.5) 

but  since (2.4) is sufficient for our  proof, we will not  prove (2.5). For  
convenience we will actually assume (2.5); the skeptical reader can easily 
adapt  the argument  so that  only (2.4) is used. 

Lower Bound. We start by proving a lemma of independent  interest 
which relates the probabil i ty that  a random walk in 7/d escapes a set to the 
(discrete) harmonic  measure of the set. Let A be a finite subset of 7/d and 

rA =inf{j~> 1: S ( j ) e A }  

Then the harmonic  m e a s u r e  HA(x ) is defined for x ~ A by (1~) 

H A ( x ) =  lira PY{S(rA)=X} 

For  d = 2, the denomina tor  on the rhs is equal to one. For  n > 0, let 

PA,. = inf{j  >~ 1: S(j) ~ A w OR. } 
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k o m m a  2. There  exist constants  0 < cl < c 2 < (30 such that  if n > 0, 
A ~ R~/2, and x u A, then 

ClH(x) P~{S(p)~A} <Px{S(p)~ORn} n 2 J 

< c2H(x ) Pz{S(p) E A } 

where H(x) = H A ( X ) ,  p = PA,n, and Z = ( [3n /4] ,  0 ..... 0). 

Proof. We m a y  assume n ~> 4, so that  OR~/2 c~ ~R3n/4 = ~ j ,  63R3,~/4 (5 
~ ? R , = ~ .  The function cp(z)=P~{S(p)~A} is ha rmonic  for n/2<]zl < 
n - 1 .  Hence,  by the discrete H a r n a c k  inequali ty (~~ there exist constants  
0 < c~ < c2 < 0% independent  of A and x, such that  for z ~ ~R3n/4 

ciPe{S(p)=x}<P~{S(p)=x}<czP~{S(p)=x} (2.6) 

By reversing paths,  we can see for x ~ A, 

Px{S(p)~c~R,}= ~ Py{S(p)=x} (2.7) 
y~aRn 

Let 

q = inf{j  ~> 1: S(j) ~ OR, w OR3n/4 } 

Then  by the M a r k o v  proper ty ,  if y ~ 0 R . ,  x e A, 

pv{S(p)=x}= ~ Py{S(tl)=z } PZ{S(p)=x} (2.8) 
z ~ OR3n/4 

Combin ing  (2.6)-(2.8), we get 

C l P z { S ( p ) = x }  ~ P y { g ( t l ) ~ R 3 n / 4 }  

y~ORn 

<Px{S(p)eOR.} 

<.c2P~{S(p)=x} ~ P~{S(q)eSR3./4} 
y E @R n 

If T(m) is a one-dimensional  r a n d o m  walk and a = i n f { j ~ >  1 : T ( j ) = 0  or 
I-n/4] }, then a s tandard  est imate states that  Po{T(a)= [n /4]  } ~4/n. If we 
use this est imate on one componen t  of S, we can derive the est imate 

clnd 24 Z Py{S(~])~R3n/4}<C2 rtd-2 
y e OR n 

and hence 

ClP~{S(p)=x}  n ~ 2 < p x { s ( p 3 ~ R , ,  } 

< c 2 P e { S ( p ) = x } n  J 2 (2.9) 
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A random walker starting at infinity which reaches A must hit 6~R3/4n 
at some time after the last hit of 0R, before hitting A. From this we can 
easily see that H(x) is bounded above (below) by the supremum (infimum) 
of 

Pz{S(p)=x} 
Pz{S(p)~A} 

where the supremum (infimum) is taken over all ZEC3-R3n/4. But by 
Harnack's inequality we can bound this on either side by a constant times 
the term with ff replacing z, giving 

clH(x) Pz{S(p) E A } <.% P~{S(p) = x} <~ c2H(x) P~{S(p) ~ A } 

Substituting the above into (2.9) gives the lemma. 
Although we will not need the following lemma for our main theorem, 

it seems appropriate to include it here. 

I . e m m a  3. If A is a connected subset of 7/2 containing 0 with 
diam(A) i> c~n, then 

P~ {S(p) ~ A } ~> Cl(1 - log c~)-1 

where s and p are as in Lemma 2. 

Proof. We may assume c~ ~< 1/2. Let ~(x, y) be the Green's function 
of the random walk killed when it leaves Rn, i.e., if x, y s R, ,  

g(x, y)--- ~ Px{S(j)=y, ~ , > j }  
1= 0 

For x, y E R3n/4, a routine estimate using the local central limit theorem 
(see, e.g., ref. 11) gives 

4n 
Cl <~ ~(x, y) ~< c2 log - -  (2.10) 

Ex-yl 

Let B ~ A be a subset such that B ~ R~,,/2~,f~, and for each nonnegative 
integer j<~n/2 x/2, B n ORj contains exactly one point. Since A is a 
connected set containing 0 with diam(A)~> ~n, it is easy to see that such a 
B exists (although B might not be connected). Let 

~n 

Y= Z I{S(j) eB} 
j=0  
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where I denotes indicator function. Then the estimate (2.10) implies that if 

X ~ R 3n/4, 

cl ~n ~< E~(Y) ~< c2 cm(1 -- log c~) 

(The second estimate uses the fact that there are at most 2 j+  1 points in 
B within distance j of x.) A standard Markov argument gives 

E~(Y) 

E~ (Y) 
>/ 

SUpy Ey(Y) 

>~c1(1 - l o g  ~) - l  

which proves the lemma. 
From Lemmas 2 and 3, 

ClH(X ) <~ e x { S ( p ) ~  ~Rn} <~ caH(x  ) (2.11) 

We will also need the following lemma proved by Kesten, (6) which is a 
discrete version of the Beurling projection theorem. 

k e m m a  4. If A is a finite connected subset of 7/2, then for every 
x ~ A  

HA(x) <~ c2(diam A) 1/2 

We are now ready to prove the lower bound of (2.2). Let S ~, S 2, S 3 
be independent random walks in 22 starting at 0 and let (2) 1 = SI[0 ,  1 ~.~], 
(0"02 $ 2 ( 0 ,  ~-2 3 = ; x ~ ]  , (03 ~- 8 3 ( 0 ,  ~ / ~ ] .  B y  (2 .5)  

P{(D 1 ("3 ( 0  2 k.) (2)3) = ~ }  ) c l n - - 1  (2.12) 

Also, 

P{(.o I (~ (0) 2 k) (0/)3) : ~ }  = r { ( J ) l  ('3 (0I)2 : ~ }  P{(2)1 (~ (J)3 : ~ l ( J )  1 (~ 0.) 2 = ~ }  

(2.13) 

For any path col, Lemmas 2 and 4 give 

Po~3{(0, • (03 = ;g } ~ c2n-1/4 

where P~3{(0~ c~ (03 = ~ }  denotes the probability that the walk (03 does not 
intersect the fixed walk (01. Hence 

p{(~ol (-~ (A)3 : ~ ] {(j)l (~ (~02 ~__ ~ } } ~ c217 1/4 
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Plugging this into (2.12) and (2.13) gives 

Cl n 1 <~c2n-1/4p{c~l~CO 2= ~ }  

or 

P{01  n o92 = ;25} >~ cln 3/4 

Burdzy et aL 

L e m m a  5. There exists a cl > 0 such that for every y e OR ~, r >~ 1, 

Py{S[O, ~r+ 1] d isconnects  0 and  0R r+ l  }/> c I 

ProoL Let S( j )  = (SI( j ) ,  S2(j)) be a two-dimensional simple random 
walk starting at 0 and let a,, = inf{j: SI(j)>7 3n}. Then it is routine to show 
that for some c > 0 

P { S I ( J ) )  -2O-d' [S2(j)t ~< ~--~, 0~j~<~n} ~>c (2.14) 

For any x ~ Z  2, let R , ( x ) =  { z + x : z e R n } .  
Let y e 0R r and for ease suppose y = (m, 2r). Let Yo, Yl ..... Y5 be the 

points y, (2r, 2r), (2 r , - -U) ,  ( - -2r , - -Zr) ,  (--2r, 2 r 1), (3"2 r 1,2r l), 

respectively. Let L~ be the line segment which connects y~ 1 and y~ and for 
a > 0  

Bi(a ) = {x: dist(x, Lg)~< a .  2"} 

Suppose Zo,..., z5 are points in Rn/2o(Yi) and Q1 ..... Q5 are nearest neighbor 
paths from zi_ 1 to z~ lying entirely in Bi(1/20). Then it is easy to check that 
the path Q = Q I " "  Q5 never hits 0 or ~?R r+l and makes a "loop" about 0 
disconnecting 0 and OR r+ 1. 

Let 

v~ = inf{j: S( j )  E Rin/loo(Yi) } 

Then by (2.14), for any z ~ R(i_ 1)n/loo(Yi- 1), 

P z { S ( j )  ~ Bi(1/20), 0 ~j~< ri} >~ c 

and hence the probability that the simple random walk starting at y makes 
a path QI" '"  Q5 as above is at least c 5, which completes the proof. 

Upper Bound. We say a set C c 772 disconnects A and B if for every 
a ~ A, b ~ B, every (nearest neighbor) path from a to b includes at least one 
point in C \  ( A w B ). 
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We note that the above construction allows us to get estimates on the 
probability cl. However, since we do not expect these estimates to be close 
to the actual value, we will not do it here. 

L e m m a  6. There exist c~> 0, c2 < oo such that 

Po{S(0, #.,) disconnects {0} and c?Rn} >/1 - c z n - ~  

Proof .  It suffices to prove the lemma for n = 2 r. By Lemma 5, for 
each s < r 

Po{S(~S, ~s+ 1) disconnects {0} and 3Rrp S[0, ~"] } ~> cl 

and hence 

P0{S(0, ~r) does not disconnect {0} and 0R r } ~< (1 - ClY- 1 

C2/7 

where c 2=  ( l - Q ) - 1  and ~ =  - l o g ( 1 - c l ) / l o g  2. 
We are now ready to prove the upper bound. As before, let 0o 1 = 

$1[0, 1 ~ x/.~ j ' ('02 8 2 ( 0 ,  2 3 = ~.f~], co 3 $3(0, Let {(2) 1: (J) l = ~/~] .  B =  does not 

disconnect 0 and 0 R ~ } .  By Lemma 6, P ( B )  <~ c2n ~/2. It is also clear that 
Pco2{(D10  (D 2 = ~ I ([01 E B c } .~- 0. Consider the random variable 

X((J)I) ~--- Po~2{ ~1 ~ (2 2 -= j~j } 

Then, since 0)2 and c% are independent, 

[ X ( ( D 1 ) ]  2 : Pen2,co3 {(2) 1 u) (0) 2 k..) (2)3) = 

and hence by (2.5) and Schwarz inequality, 

c2n 1 .I> P { 0 ) l  ~ (0)2 t )  0)3) = ~ } 

= Z~(); 2) 

) [EcoI(X-IB)]2 [Er ] -1 

= [E,,~,(x)] ~ [P (B ) ]  

which gives 

P{0)1 ~ ~o2 = ~J } = Eo~I(X) <~ cl n -1/2 ~/4 
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3. S I M U L A T I O N S  IN T W O  A N D  THREE D I M E N S I O N S  

In order to estimate ~ for d =  2, 3, Monte Carlo simulations were 
made of the probability 

h(n)-= P{S ' ( i )~S2( j ) :  O<~i<~n, O<~j~n, (i , j)~(O, 0)} 

While this is not exactly the same as f(n), we expect that h(n) has 
asymptotic form 

h(n) ~ L(n) n -~ (3.1) 

where L is a slowly varying function which should be asymptotic to a 
constant times the L in (1.1) and { is the same as in (1.1). Suppose that M 
independent pairs of random walks are taken, and let K(n) be the number 
of such pairs which have no intersection up through time n. Then we can 
estimate h(n) by M-~K(n). To estimate an exponent such as {, we must 
assume that h has a form such as (3,1) and that the asymptotic regime has 
been reached. Let us suppose for the moment that 

h(n) = cln -~ (3.2) 

Then if n 1 < n2, 

log p {= 
log n~ - log n2 

where p-=p(nl,n2)=h(n2)/h(nl). Since the walks are independent, an 
approximate 95% confidence interval for p would be [/5 , /5+],  where 
fi -= K(n2)/K(nl) and 

_ + 2  ~ f f ( 1 - f i ) ]  '/2 

and hence an approximate 95% confidence interval for ~ wo~ld be 
[~(/5+), ~(/5 )], where 

log fi + 
~(~5+ ) = log nl -- log n 2 

Also, if n 1 < n 2 < 1"/3, the estimate for ~(n 1, n2) is essentially independent of 
the estimate for p(n2, n3). Of course, this assumes that h(n) has the form 
(3.2), but if h(n) has the asymptotic form (3.1), this should not be too far 
from the correct estimate. 
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Table  I 

nl n2 K(nl) ~ ( o  ) (,(o) ~(fi ) 

d=2 

d=3 

50 70 182,727 0.603 0.610 0.618 
70 100 148,814 0.605 0.613 0.621 

100 150 119,595 0.604 0.613 0.621 
150 200 93,296 0.602 0.612 0.623 
200 250 78,224 0.604 0.617 0.631 
250 300 68,158 0.608 0.623 0.639 
300 350 60,837 0.617 0.635 0.652 
350 400 55,167 0.594 0.613 0.632 
400 450 50,832 0.570 0.591 0.612 
450 499 47,414 0.592 0.615 0.639 

50 100 224,147 0.288 0.291 0.294 
100 200 183,175 0.286 0.289 0.293 
200 300 149,912 0.280 0.284 0.289 
300 400 133,582 0.283 0.289 0.295 
400 500 122,926 0.282 0.289 0.296 
500 600 115,252 0.277 0.285 0.293 
600 700 109,414 0.282 0.290 0.299 
700 800 104,626 0.275 0.285 0.294 
800 900 100,725 0.275 0.285 0.295 
900 999 97,404 0.275 0.285 0.296 

F o r  d =  2, M =  3,000,000 pairs  of r a n d o m  walks  of length 500 were 
generated;  for d =  3, M =  1,000,000 pairs  of walks of  length 1,000 were 
generated.  W e  list the results for var ious  values of n l ,  n2 in Table  I. 

F r o m  the table  we can see tha t  the value of  ~3 seems to be abou t  0.29, 
and  that  we are in the a sympto t i c  regime. There  is cons iderab ly  more  
var iance  for the values of ~2, which indicates  tha t  ei ther  the a sympto t i c  
regime has no t  been reached or  pe rhaps  tha t  the a sympto t i c  behav io r  of 
h(n)  is more  compl i ca t ed  than  (3.1). We  find it cur ious  that  our  in terval  for 
n 1 = 50, n 2 = 70 does  no t  include 5/8. The values for nl = 50, n2 = 70 were 
cons idered  by Dup lan t i e r  and  K w o n  (3) in der iv ing the ~2 = 5/8 conjecture,  
and  their  s imula t ions  place the exponen t  in a range  0 .622_0 .004 .  O u r  
s imula t ions  would  tend to indicate  tha t  ~2 < 5/8, bu t  we cer ta inly  canno t  
preclude ~2 = 5/8 with any degree of confidence.  
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